If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+14x-40=0
a = 5; b = 14; c = -40;
Δ = b2-4ac
Δ = 142-4·5·(-40)
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{249}}{2*5}=\frac{-14-2\sqrt{249}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{249}}{2*5}=\frac{-14+2\sqrt{249}}{10} $
| 2/3+1/6q=5/9q+1/3 | | (x+7)(x-3)=(x+1)² | | (-4f+9)-(8f+9)=-12f | | 7x^2-14x+28=0 | | 7x^2+14x+28=0 | | 10v+0=10v+4v | | 5/8x1/3x3/5=G | | x+-2x=150+-2x | | 8+p=-1 | | 7/2+4(e+5)=205/2 | | (2w−9)+(−4w−5)=- | | 4-(6x-12)=10 | | W-5/w^2=1/20 | | 7/x=2/26 | | 4x+90+90=720-360 | | (x+7)(x-3)=(x+1)2 | | 3/2y-1y=4+1/2y | | 6-18p=38 | | 8(s+3)=7s | | 4z–4=-7+z | | 4z÷7-9=-6 | | 9h+3+2h=10h+9 | | Y-18p=38 | | (4-2)(4+2)=x | | -5+6m=-6+5m | | -7+3x=2x-7 | | x/9=-5/9 | | 5u-7=23 | | 8x+7=5+x | | -3b=6b-5 | | 4^x-5*(2^x)+6=0 | | -4=6+2u |